

CITY OF HUNTINGTON BEACH 2025 PUBLIC HEALTH GOALS REPORT

JUNE 2025

861 S.Village Oaks Drive, Suite 100 • Covina CA 91724 Phone: (626) 967-6202 • Fax: (626) 331-7065 • Website: www.stetsonengineers.com

2025 Public Health Goals (PHGs) Report City of Huntington Beach

1.0 Introduction

Under the Calderon-Sher Safe Drinking Water Act of 1996 public water systems in California serving greater than 10,000 service connections must prepare a report containing information on 1) detection of any contaminant in drinking water at a level exceeding a Public Health Goal (PHG), 2) estimate of costs to remove detected contaminants to below the PHG using Best Available Technology (BAT), and 3) health risks for each contaminant exceeding a PHG. This report must be made available to the public every three years. The initial PHGs Report was due on July 1, 1998, and subsequent reports are due every three years thereafter.

The 2025 PHGs Report has been prepared to address the requirements set forth in Section 116470 of the California Health and Safety Code. It is based on water quality analyses during calendar years 2022, 2023, and 2024 or, if certain analyses were not performed during those years, the most recent data is used. The 2025 PHGs Report has been designed to be as informative as possible, without unnecessary duplication of information contained in the Consumer Confidence Report (also known as Water Quality Report), which is provided to customers by July 1 of each year.

There are no regulations explaining requirements for the preparation of PHGs reports. A workgroup of the Association of California Water Agencies (ACWA) Water Quality Committee has prepared suggested guidelines for water utilities to use in preparing PHGs reports. The ACWA guidelines were used in the preparation of this 2025 PHGs Report. These guidelines include tables of cost estimates for BAT. The State of California (State) provides ACWA with numerical health risks and category of health risk information for contaminants with PHGs. This health risk information is appended to the ACWA guidelines.

2.0 California Drinking Water Regulatory Process

California Health and Safety Code Section 116365 requires the State to develop a PHG for every contaminant with a primary drinking water standard or for any contaminant the State is

proposing to regulate with a primary drinking water standard. A PHG is the level of a contaminant in drinking water that poses no significant health risk if consumed for a lifetime. The process of establishing a PHG is a risk assessment based strictly on human health considerations. PHGs are recommended targets and are not required to be met by any public water system.

The State office designated to develop PHGs is the California Environmental Protection Agency's Office of Environmental Health Hazard Assessment (OEHHA). The PHG is then forwarded to the State Water Resources Control Board, Division of Drinking Water (DDW) for use in revising or developing a Maximum Contaminant Level (MCL) in drinking water. The MCL is the highest level of a contaminant that is allowed in drinking water. State MCLs cannot be less stringent than federal MCLs and must be as close as is technically and economically feasible to the PHGs. DDW is required to take treatment technologies and cost of compliance into account when setting an MCL. Each MCL is reviewed at least once every five years.

Two radiological contaminants (gross alpha particle activity and gross beta particle activity) have MCLs but do not yet have designated PHGs. For these contaminants, the Maximum Contaminant Level Goal (MCLG), the federal U.S. Environmental Protection Agency (USEPA) equivalent of PHGs, is used in the 2025 PHGs Report.

3.0 Identification of Contaminants

Section 116470(b)(1) of the Health and Safety Code requires public water systems serving more than 10,000 service connections to identify each contaminant detected in drinking water that exceeded the applicable PHG. Section 116470(f) requires the MCLG to be used for comparison if there is no applicable PHG.

The City of Huntington Beach (City) water system has approximately 53,348 service connections. The following constituents were detected at one or more locations within the drinking water system at levels that exceeded the applicable PHGs or MCLGs:

• **Arsenic** – naturally-occurring in local groundwater.

- Bromate formed when naturally-occurring bromide reacts with ozone during the disinfection process in treated surface water purchased from the Metropolitan Water District of Southern California (MWDSC).
- Gross alpha particle activity (gross alpha) naturally-occurring in local groundwater and treated surface water purchased from MWDSC.
- **Gross beta particle activity** (gross beta) naturally-occurring in treated surface water purchased from MWDSC; not required to be tested in groundwater.
- **Hexavalent Chromium** naturally-occurring in local groundwater.
- Perfluorooctanesulfonic acid (PFOS) industrial contamination in local groundwater.
- Uranium naturally-occurring in local groundwater and treated surface water purchased from MWDSC.

The accompanying table shows the applicable PHG or MCLG and MCL for each contaminant identified above. The table includes the maximum, minimum, and average concentrations of each contaminant in drinking water supplied by the City in calendar years 2022 through 2024.

4.0 Numerical Public Health Risks

Section 116470(b)(2) of the Health and Safety Code requires disclosure of the numerical public health risk, determined by OEHHA, associated with the MCLs, PHGs and MCLGs. Available numerical health risks developed by OEHHA for the contaminants identified above are shown on the accompany table. Only numerical risks associated with cancer-causing chemicals have been quantified by OEHHA.

Arsenic – OEHHA has determined the health risk associated with the PHG is 1 excess case of cancer in a million people and the risk associated with the MCL is 2.5 excess cases of cancer in 1,000 people exposed over a 70-year lifetime.

Bromate – OEHHA has determined the health risk associated with the PHG is 1 excess case of cancer in a million people and the risk associated with the MCL is 1 excess case of cancer in 10,000 people exposed over a 70-year lifetime.

Gross Alpha – OEHHA has not established a PHG. USEPA has established an MCLG of 0. USEPA has determined the risk associated with the MCL is 1 excess case of cancer in 1,000 people exposed over a 70-year lifetime for the most potent alpha emitter.

Gross Beta – OEHHA has not established a PHG. USEPA has established an MCLG of 0. USEPA has determined the risk associated with the MCL is 2 excess cases of cancer in 1,000 people exposed over a 70-year lifetime for the most potent beta emitter.

Hexavalent Chromium – OEHHA has determined the health risk associated with the PHG is 1 excess case of cancer in a million people and the risk associated with the MCL is 5 excess cases of cancer in 10,000 people exposed over a 70-year lifetime.

PFOS – OEHHA has determined the health risk associated with the PHG is 1 excess case of cancer in a million people. There is no California MCL for PFOS; therefore, the risk information associated with the MCL is not available/applicable.

Uranium – OEHHA has determined the health risk associated with the PHG is 1 excess case of cancer in a million people and the risk associated with the MCL is 5 excess cases of cancer in 100,000 people exposed over a 70-year lifetime.

5.0 Identification of Risk Categories

Section 116470(b)(3) of the Health and Safety Code requires identification of the category of risk to public health associated with exposure to the contaminant in drinking water, including a brief, plainly worded description of those terms. The risk categories and definitions for the contaminants identified above are shown on the accompanying table.

6.0 Description of Best Available Technology

Section 116470(b)(4) of the Health and Safety Code requires a description of the BAT, if any is available on a commercial basis, to remove or reduce the concentrations of the contaminants identified above. The BATs are shown on the accompanying table.

7.0 Costs of Using Best Available Technologies and Intended Actions

Section 116470(b)(5) of the Health and Safety Code requires an estimate of the aggregate cost and cost per customer of utilizing the BATs identified to reduce the concentration of a contaminant to a level at or below the PHG or MCLG. In addition, Section 116470(b)(6) requires a brief description of any actions the water purveyor intends to take to reduce the concentration of the contaminant and the basis for that decision.

Arsenic – The BATs for removal of arsenic in water for large water systems are: activated alumina, coagulation/filtration, electrodialysis, ion exchange, lime softening, oxidation/filtration, and reverse osmosis. Arsenic was detected above the PHG in the local groundwater (two operating wells). The City is in compliance with the MCL for arsenic. The estimated cost to reduce arsenic levels in the groundwater to below the PHG of 0.004 microgram per liter (μ g/l) using ion exchange was calculated. Because the DDW detection limit for purposes of reporting (DLR) for arsenic is 2 μ g/l, treating arsenic to below the PHG level means treating arsenic to below the DLR of 2 μ g/l. There are numerous factors that may influence the actual cost of reducing arsenic levels to the PHG. Achieving the water quality goal for arsenic could be approximately \$3,460,000 per year, or \$65 per service connection per year.

Bromate – The BATs for removal of bromate in water for large water systems are: coagulation/filtration optimization, granular activated carbon, and reverse osmosis. Bromate was detected above the PHG in the treated surface water purchased from MWDSC. The City is in compliance with the MCL for bromate. The estimated cost to reduce bromate levels in MWDSC water to below the PHG of 0.1 μ g/l using reverse osmosis was calculated. Because the DLR for bromate is 1 μ g/l, treating bromate to below the PHG level means treating bromate to below the DLR of 1 μ g/l. There are numerous factors that may influence the actual cost of reducing bromate levels to the PHG. Achieving the water quality goal for bromate could range from approximately \$1,700,000 to \$14,600,000 per year, or between \$32 and \$273 per service connection per year.

Gross Alpha, Gross Beta, and Uranium – The only BAT for the removal of gross alpha in water for large water systems is reverse osmosis, which can also remove gross beta and uranium, if detected. Gross alpha was detected above the MCLG in the local groundwater (seven operating wells) and treated surface water purchased from MWDSC. Gross beta was

detected above the MCLG in the treated surface water purchased from MWDSC. Uranium was detected above the PHG in the local groundwater (eight operating wells) and treated surface water purchased from MWDSC. The cost of providing treatment using reverse osmosis to reduce gross alpha levels to the MCLG of 0 picoCurie per liter (pCi/l) (and consequently gross beta to below the MCLG of 0 pCi/l and uranium in to below the PHG of 0.43 pCi/l) was calculated. Because the DLR for gross alpha is 3 pCi/l, treating gross alpha to 0 pCi/l means treating it to below the DLR of 3 pCi/l (and treating gross beta and uranium to below their respective DLRs of 4 pCi/l and 1 pCi/l). Achieving the water quality goal for gross alpha could range from \$8,230,000 to \$70,500,000 per year, or between \$154 and \$1,320 per service connection per year.

Hexavalent Chromium – The BATs for removal of hexavalent chromium in water for large water systems are: ion exchange, reduction/coagulation/filtration, and reverse osmosis. Hexavalent chromium was detected above the PHG in the local groundwater (four operating wells). The City is in compliance with the MCL for hexavalent chromium. The estimated cost to reduce hexavalent chromium levels in the groundwater to below the PHG of 0.02 μg/l using reduction/coagulation/filtration was calculated. Because the DLR for hexavalent chromium is 0.1 μg/l, treating hexavalent chromium to below the PHG level means treating hexavalent chromium to below the DLR of 0.1 μg/l. There are numerous factors that may influence the actual cost of reducing hexavalent chromium levels to the PHG. Achieving the water quality goal for hexavalent chromium could be approximately \$9,070,000 to \$56,700,000 per year, or between \$170 and \$1,060 per service connection per year.

PFOS – The BATs for removal of PFOS in water for large water systems are: granular activated carbon, ion exchange, and reverse osmosis. PFOS was detected above the PHG in the local groundwater (two operating wells). The City is in compliance with the State requirements for PFOS. The estimated cost to reduce PFOS levels in the groundwater to below the PHG of 1 nanogram per liter (ng/l) using ion exchange was calculated. Because the DDW Consumer Confidence Report Detection Level (CCRDL) for PFOS is 4 ng/l, treating PFOS to below the PHG level means treating PFOS to below the CCRDL of 4 ng/l. There are numerous factors that may influence the actual cost of reducing PFOS levels to the PHG. Achieving the water quality goal for PFOS could be approximately \$273,000 to \$3,740,000 per year, or between \$5 and \$70 per service connection per year.

All Contaminants – In addition, a cost estimate to treat all water produced by the City using reverse osmosis to remove all the contaminants detected above the PHGs or MCLGs was calculated. All the contaminants listed in the accompanying table may be removed to non-detectable levels by reverse osmosis. As shown on the accompanying table, achieving the water quality goals for all contaminants using reverse osmosis could range from \$8,230,000 to \$70,500,000 per year, or between \$154 and \$1,320 per service connection per year.

For additional information, please contact the City of Huntington Beach Water Quality at 714-536-5921 or write to the City of Huntington Beach, 2000 Main Street, Huntington Beach, California 92648.

J:\2952\2952-001 Huntington Beach PHG 2025\Huntington Beach_2025 PHG_text_Final.docx

2025 PUBLIC HEALTH GOALS REPORT CITY OF HUNTINGTON BEACH

	UNITS	PHG	MCL	DLR	CONCENTRATION		CATEGORY	CANCER RISK	CANCER	BEST	AGGREGATE	COST PER
PARAMETER	OF	OR		OR	AVERAGE	RANGE	OF	AT PHG	RISK	AVAILABLE	COST	SERVICE CONNECTION
	MEASUREMENT	(MCLG)*		(CCRDL)			RISK	OR MCLG	AT MCL	TECHNOLOGIES	PER YEAR	PER YEAR
INORGANIC CHEMICALS												
Arsenic	μg/l	0.004	10	2	ND	ND - 2.8	С	1 x 10 ⁻⁶	2.5 x 10 ⁻³	AA,C/F,E,IE,LS,O/F,RO	\$3,460,000 (a)	\$65 (a)
Bromate	μg/l	0.1	10	1	ND	ND - 6.3	С	1 x 10 ⁻⁶	1 x 10 ⁻⁴	C/F, GAC, RO	\$1,700,000 - \$14,600,000 (b)	\$32 - 273 (b)
Hexavalent Chromium	μg/l	0.02	10	0.1	ND	ND - 0.4	С	1 x 10 ⁻⁶	5 x 10 ⁻⁴	IE, R/C/F, RO	\$9,070,000 - \$56,700,000 (c)	\$170 - \$1,060 (c)
ORGANIC CHEMICALS								_				
Perfluorooctanesulfonic Acid (PFOS)	ng/l	1	4 **	(4)	ND	ND - 9.3 ***	С	1 x 10 ⁻⁶	(d)	GAC, IE, RO	\$273,000 - \$3,740,000(e)	\$5 - \$70 (e)
RADIOLOGICAL												
Gross Alpha Particle Activity	pCi/l	(0)	15	3	ND	ND - 5	С	0	1 x 10 ⁻³	RO	\$8,230,000 - \$70,500,000 (f)	\$154 - \$1,320 (f)
Gross Beta Particle Activity	pCi/l	(0)	50	4	ND	ND - 9	С	0	2 x 10 ⁻³	IE, RO		
Uranium	pCi/l	0.43	20	1	2.1	ND - 7.5	С	1 x 10 ⁻⁶	5 x 10 ⁻⁵	IE, RO, LS,C/F		
ALL CONTAMINANTS										RO	\$8,230,000 - \$70,500,000 (g)	\$154 - \$1,320 (g)

^{*} MCLGs are shown in parentheses. MCLGs are provided only when no applicable PHG exists.

RISK CATEGORIES

C (Carcinogen) = A substance that is capable of producing cancer.

NOTES

CCRDL = Consumer Confidence Report Detection Level

DLR = Detection Limit for Purposes of Reporting

MCL = Maximum Contaminant Level

MCLG = Maximum Contaminant Level Goal

μg/l = micrograms per liter or parts per billion

ND = Not Detected

ng/l = nanograms per liter or parts per trillion

pCi/I = picoCuries per liter

PHG = Public Health Goal

- (a) Estimated cost to remove arsenic using IE.
- (b) Estimated cost to remove bromate using RO.
- (c) Estimated cost to remove hexavalent chromium using R/C/F.
- (d) Not applicable. Cancer risk cannot be calculated.
- (e) Estimated cost to remove PFOS using IE.
- (f) Estimated cost to remove gross alpha particle activity using RO, which also removes gross beta particle activity and uranium.
- (g) Assuming treating the entire production by RO, which can remove all contaminants listed in the above table to below the detectable levels.

TREATMENT TECHNOLOGIES

AA = Activated Aluminum

C/F = Coagulation/Filtration

E = Electrodialysis

GAC = Granular Activated Carbon

IE = Ion Exchange

LS = Lime Softening

O/F = Oxidation/Filtration

R/C/F = Reduction/Coagulation/Filtration

RO = Reverse Osmosis

^{**} Federal MCL

^{***} Range of detections reported before the effective Federal MCL compliance date of April 26, 2029.